Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
IntelliCAD Technology Consortium Announces Release of IntelliCAD 11.0
The IntelliCAD Technology Consortium (ITC) announces the release of...
NEW SXblue SMART GNSS Smart Antenna
SXblue SMART, the newest addition to the GNSS smart...
Geospatial Analytics Market Size Worth USD 134.23 Billion in 2028
Rising use of AI and ML in geospatial analytics,...
Spire Global Announces Space Services Deal to Scale Constellation for HANCOM inSPACE with Second Satellite
VIENNA, Va.- Spire Global, Inc. (NYSE: SPIR) (“Spire” or “the...
MAXAR AWARDED GEOXO SPACECRAFT PHASE A STUDY CONTRACT FOR NOAA’S NEXT-GENERATION WEATHER MONITORING SATELLITES
WESTMINSTER, Colo. - Maxar Technologies (NYSE:MAXR) (TSX:MAXR), provider of...
A satellite image shows the coast of the Pacific Northwest, an area susceptible to tsunamis. (Credit: SeaWiFS Project, NASA/Goddard Space Flight Center, ORBIMAGE)

A satellite image shows the coast of the Pacific Northwest, an area susceptible to tsunamis. (Credit: SeaWiFS Project, NASA/Goddard Space Flight Center, ORBIMAGE)

Stretching offshore from northern California to British Columbia, the Cascadia subduction zone could slip at any time, causing a powerful earthquake and triggering a tsunami that would impact communities along the coast.

Scientists from multiple disciplines at the University of Washington (UW) and other institutions are learning more about this hazard. Dozens of UW scientists are part of the M9 Project, a research endeavor funded by the National Science Foundation to study the Cascadia subduction zone and communicate information about potential hazards to government officials and the public. Key goals of the M9 Project include mathematical modeling of tsunami waves, which tries to predict where and how an earthquake-triggered wave will affect the coast.

Read a related interview with two University of Washington scientists here.

Comments are closed.