Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Maxar Secures NOAA Approval to Provide Non-Earth Imaging Services to Government and Commercial Customers
WESTMINSTER, Colo.- Maxar Technologies (NYSE:MAXR) (TSX:MAXR), provider of comprehensive...
AEye Announces Groundbreaking Immersive Lidar Experience for Attendees at CES 2023
DUBLIN, Calif.- AEye, Inc. (NASDAQ: LIDR), a global leader in...
WIMI Hologram Academy: Multi-Dimensional Holographic Vision Opens A New Chapter In Cyberspace Mapping
HONG KONG - WIMI Hologram Academy, working in partnership...
Foursquare to Power Geospatial Data Visualization in Amazon SageMaker
NEW YORK-Foursquare, the leading independent location technology company, exclusively...
UK govt funds rocket that could allow us to escape solar system
LONDON- DECEMBER 2022:  Pulsar Fusion, a UK rocket company that...
This first ever map of global neutrino emissions highlights concentrations of natural radioactive elements and manmade nuclear fission. (Credit: MATLAB)

This first ever map of global neutrino emissions highlights concentrations of natural radioactive elements and manmade nuclear fission. (Credit: MATLAB)

A map published in Nature Scientific Reports shows what the world would look like if we could see the trillions of neutrinos that emanate from the surface of the planet each second. Dark spots on the map indicate nuclear reactors and parts of Earth’s crust rich with radioactive uranium and thorium, which emit neutrinos when they decay.

According to William McDonough, a geophysicist at the University of Maryland, the map was created using neutrino signals captured in two detectors, one in Italy and one in Japan. The rest of the map was constructed using data about the composition and density of Earth’s crust and the location of the world’s reactors.

Dark patches appear around mountain ranges, where there’s a lot of naturally occurring radioactive decay. Some of the dark spots are from reactors, but these are actually antineutrinos—the antimatter counterpart to neutrinos.

The detectors employ building-sized tanks of mineral oil, through which trillions of neutrinos pass unobstructed each second. But occasionally a neutrino hits the nucleus of a hydrogen atom, annihilating a proton and leaving behind a positron and a neutron—which will register a signal.

An enormous neutrino detector may prove useful for global monitoring, says Lindley Winslow, a neutrino physicist at MIT. A mega-detector called Juno is planned to start up in China in 2020, although that’s primarily aimed at answering fundamental questions about the nature of the universe. The difference between neutrinos and antineutrinos may hold the answer to why the universe produced more matter than antimatter, allowing the world to exist.

Comments are closed.