Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Sentinel-5P Successfully Launched to Monitor World’s Pollution
The Airbus built, pollution monitoring satellite Sentinel-5 Precursor has...
2017 Commercial UAV Expo Keynotes Focus on Drone Data Integration & Workflow
PORTLAND, MAINE - The organizers of Commercial UAV Expo,...
U.S. Air Force Declares First Lockheed Martin GPS III Satellite “Available for Launch”
DENVER – Ushering in a new era of advanced...
Airbus-Built Full Electric EUTELSAT 172B Satellite Reaches Geostationary Orbit in Record Time
Paris / Toulouse – The EUTELSAT 172B spacecraft, built...
Winners of 2017 Luciad Geospatial Excellence Award Announced at the 2017 User Conference
Belgium: Recognizing the world’s most innovative geospatial technology, this year...

November 29, 2016
Rare November Tokyo Snowfall

image

A false-color image from NASA’s Terra satellite shows a stark contrast between snow (blue) and clouds (white). (Credit: NASA Earth Observatory image by Joshua Stevens, using MODIS data from LANCE/EOSDIS Rapid Response.)

A false-color image from NASA’s Terra satellite shows a stark contrast between snow (blue) and clouds (white). (Credit: NASA Earth Observatory image by Joshua Stevens, using MODIS data from LANCE/EOSDIS Rapid Response.)

The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image of Tokyo on Nov. 24, 2016, after it received its first November snowfall in more than half a century. The snow fell in and around the Japanese capital, coating the metropolitan area and accumulating along some sidewalks.

The snow traces the contours of surrounding mountains and is distinguishable from clouds offshore. Central Tokyo is gray-brown in color, suggesting less accumulation or faster melting. Urban centers tend to shed snow faster than surrounding countryside because they’re often hotter due to the urban heat-island effect.

The November dusting was caused by a cold air mass moving down from the Arctic, according to the Japan Meteorological Agency. Meteorologists connected the storm to the Arctic oscillation, a climate pattern that affects the northern hemisphere. Usually, high air pressure in the mid-latitudes prevents colder, low-pressure air seeping down from the Arctic. However, weaker pressure systems occasionally disrupt this barrier, and colder air can penetrate further south.

 

Comments are closed.