Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Earth Day: Kids Saving the Planet & Wildlife – Barron Prize
The Gloria Barron Prize for Young Heroes is a...
Space Foundation Names TheraLight, LLC as Space Certification Program Partner
COLORADO SPRINGS, Colo.  — Space Foundation, a 501(c)(3) global...
Australian Space Forum to put space sector in spotlight
The Australian Space Forum to be held in South...
Trimble Introduces Siteworks SE Starter Edition Site Positioning Software for Construction Surveying
SUNNYVALE, Calif. —Trimble (NASDAQ:TRMB) introduced today the Trimble® Siteworks SE Starter Edition, an...
Accelerating exploration for geothermal energy with UAV magnetometry conducted in North-Central Nevada
Reno, Nevada, USA; Riga, Latvia - Geophysics faculty and...

The Visible Infrared Imaging Radiometer Suite on the Suomi NPP satellite captured a natural-color image of such swirls on the lee side of Guadalupe Island. (Credit: NASA Earth Observatory images by Joshua Stevens and Jesse Allen, using Landsat data from the U.S. Geological Survey and VIIRS data from the Suomi National Polar-orbiting Partnership)

In 1912, physicist Theodore von Kármán first described a process that makes long, spiraling cloud patterns in the sky. These so-called “von Kármán vortices” arise when winds are diverted around a blunt, high-profile area, often an island rising from the ocean. The alternating direction of rotation in the air forms swirls in the clouds.

On May 24, 2017, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured a natural-color image of such swirls on the lee side of Guadalupe Island, a volcanic island that rises from the Pacific Ocean off the coast of Baja California, Mexico.

According to Carlos Torres of the Autonomous University of Baja California, the pattern of the swirls depends on the wind intensity. The vortices are driven by the prevailing winds, which can change seasonally and cause differences in the direction and structure of the vortices.

Comments are closed.