Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Quantum Spatial Streamlines Access to Oregon’s High Resolution Imagery on New Online Portal
PORTLAND, Ore.- Quantum Spatial, Inc. (QSI), the nation’s largest...
Esri Releases Ready-to-Use US Census Bureau Data in ArcGIS Living Atlas
REDLANDS, Calif.- Esri, the global leader in location intelligence,...
XYO Network Headed to Space – Definitive Agreement Executed to Bring XYO Into Orbit With Launch of Blockchain Satellite on SpaceX Falcon 9
SAN DIEGO - XYO Network, the technology that bridges...
Accela Announces Experienced Technology Leader Gary Kovacs as CEO
SAN RAMON, Calif.- Accela, the leading provider of cloud-based solutions...
EagleView Remains Front Runner in Aerial Imagery with Acquisition of Spookfish
Bothell, WA  – EagleView, the leading provider of high-resolution...

The Visible Infrared Imaging Radiometer Suite on the Suomi NPP satellite captured a natural-color image of such swirls on the lee side of Guadalupe Island. (Credit: NASA Earth Observatory images by Joshua Stevens and Jesse Allen, using Landsat data from the U.S. Geological Survey and VIIRS data from the Suomi National Polar-orbiting Partnership)

In 1912, physicist Theodore von Kármán first described a process that makes long, spiraling cloud patterns in the sky. These so-called “von Kármán vortices” arise when winds are diverted around a blunt, high-profile area, often an island rising from the ocean. The alternating direction of rotation in the air forms swirls in the clouds.

On May 24, 2017, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured a natural-color image of such swirls on the lee side of Guadalupe Island, a volcanic island that rises from the Pacific Ocean off the coast of Baja California, Mexico.

According to Carlos Torres of the Autonomous University of Baja California, the pattern of the swirls depends on the wind intensity. The vortices are driven by the prevailing winds, which can change seasonally and cause differences in the direction and structure of the vortices.

Comments are closed.