Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Intermap Technologies Meets Standards to Trade on the OTCQX® Best Market
Begins trading today, creating more liquidity, transparency and opportunity...
OGC Membership approves and publishes minor update to GeoPackage
The Open Geospatial Consortium (OGC) membership has approved and...
GAF Has Been Awarded A Multi-Year Contract By the German Federal State of Saxony-Anhalt
Munich -GAF AG has won the first European call...
Ibeo Automotive Systems Tests LiDAR Systems for Autonomous Driving in Berlin and Beijing
Hamburg – The LiDAR sensor specialist from Hamburg Ibeo...
Airbus Imagery Supports IBM Efforts to Provide Vegetation Insights for Grid Reliability
Airbus now provides very high-resolution satellite imagery to The...

Click image to enlarge.

And the skies of night were alive with light, with a throbbing, thrilling flame; Amber and rose and violet, opal and gold it came. It swept the sky like a giant scythe, it quivered back to a wedge; Argently bright, it cleft the night with a wavy golden edge.

— An excerpt from "The Ballad of Northern Lights" by poet Robert Service

 
In describing auroras as he saw them in the far north in 1908, Service captured the sense of fluid motion; the vivid color; and the fiery, flame-like qualities one sees from the ground. His description works just as well in the southern hemisphere and when looking down from above, as shown in this image captured Sept. 17 from the International Space Station. Auroras are a spectacular sign that our planet is electrically and magnetically connected to the sun. These light shows are provoked by energy from the sun and fueled by electrically charged particles trapped in Earth’s magnetic field.

 

The pressure and magnetic energy of the solar plasma stretches and twists the magnetic field of Earth like rubber bands, particularly in the tail on the night side. This energizes the particles trapped in our magnetic field; that energy is released suddenly as the field lines snap the particles down the field lines toward the north and south magnetic poles.

Fast-moving electrons collide with Earth’s upper atmosphere, transferring their energy to oxygen and nitrogen molecules and making them chemically "excited." As the gases return to their normal state, they emit photons—small bursts of energy in the form of light. The color of light  reflects the type of molecules releasing it; oxygen molecules and atoms tend to glow green, white or red, while nitrogen tends to be blue or purple. This ghostly light originates at altitudes of 100 to 400 kilometers (60 to 250 miles).

 

Image courtesy of the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center.

Caption by Michael Carlowicz.

Comments are closed.