Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Earth Day: Kids Saving the Planet & Wildlife – Barron Prize
The Gloria Barron Prize for Young Heroes is a...
Space Foundation Names TheraLight, LLC as Space Certification Program Partner
COLORADO SPRINGS, Colo.  — Space Foundation, a 501(c)(3) global...
Australian Space Forum to put space sector in spotlight
The Australian Space Forum to be held in South...
Trimble Introduces Siteworks SE Starter Edition Site Positioning Software for Construction Surveying
SUNNYVALE, Calif. —Trimble (NASDAQ:TRMB) introduced today the Trimble® Siteworks SE Starter Edition, an...
Accelerating exploration for geothermal energy with UAV magnetometry conducted in North-Central Nevada
Reno, Nevada, USA; Riga, Latvia - Geophysics faculty and...

January 23, 2014
Colorful Stripes Highlight China Faults

NASA’s Landsat 8 satellite captured this view of China’s Keping Shan thrust belt on July 30, 2013. The red layers near the top of the sequence are Devonian sandstones formed by ancient rivers. The green layers are Silurian sandstones formed in a moderately deep ocean. The cream-colored layers are Cambrian-Ordovician limestone formed in a shallow ocean.

Just south of China’s Tien Shan mountains, in northwestern Xinjiang province, a remarkable series of ridges dominate the landscape. The highest hills rise up to 1,200 meters (3,900 feet) above the adjacent basins, and they are decorated with distinctive red, green and cream-colored sedimentary rock layers. The colors reflect rocks that formed at different times and in different environments.

This part of Xinjiang province has a rich and varied geologic history. About 300 million years ago, the Tien Shan mountains began forming when the Tarim Block—a mass of land that was once part of Australia—collided with Eurasia. During the Mesozoic Era (252 million to 66 million years ago), a series of island arcs (curved chains of volcanic islands) continued to smash into Eurasia, further building the mountain range. About 80 million years ago, the Indian subcontinent started colliding as well, triggering a new phase of mountain building.

Image courtesy of NASA.

Read the full story.

Comments are closed.