Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Breakthrough Technology Introduced to Combat Growing Global Water Crisis
DUNEDIN, FLA. - To combat the global threat of...
Blue Marble Geographics releases version 8.1 of the GeoCalc Software Development Kit
Hallowell, Maine  — Blue Marble Geographics® (bluemarblegeo.com) is pleased to announce...
Fugro finishes first phase on Alcatel Submarine Networks’ transpacific Bifrost Cable System
Fugro has completed the first phase of its marine...
Paytronix Announces Integration with Google to enable ordering on Google Search and Maps
Newton, MA– Paytronix Systems, Inc., the most advanced digital guest experience platform, today announced...
USAF, Kratos Complete Milestone 1 of the Autonomous Attritable Aircraft Experimentation (AAAx) Campaign with Successful Flight Test Series
SAN DIEGO - Kratos Defense & Security Solutions, Inc. (NASDAQ:...

A new view of Hurricane Dorian shows the layers of the storm, as seen by an experimental NASA weather satellite that's the size of a cereal box. TEMPEST-D reveals rain bands in four layers of the storm as Hurricane Dorian approaches Florida on Sept. 3, 2019. The multiple vertical layers show where the strongest convective "storms" within the hurricane are pushing high into the atmosphere, with pink, red and yellow corresponding to the areas of heaviest rainfall.

Known as a CubeSat, TEMPEST-D (Temporal Experiment for Storms and Tropical Systems Demonstration) uses a miniaturized version of a microwave radiometer — a radio wave instrument used to measure rain and moisture within the clouds. If TEMPEST-D can successfully track storms like Dorian, the technology demonstration could lead to a train of small satellites that work together to track storms around the world. CubeSats are much less expensive to produce than traditional satellites; in multiples they could improve our global storm coverage and forecasting data.

TEMPEST-D is led by Colorado State University in Fort Collins and managed by JPL in partnership with Blue Canyon Technologies in Boulder, Colo., and Wallops Flight Facility in Virginia. The mission is sponsored by NASA's Earth Ventures program and managed by the Earth Science Technology Office at NASA Headquarters in Washington. The radiometer instrument was built by JPL and employs high-frequency microwave amplifier technology developed by Northrop Grumman.

Image Credit: NASA/JPL-Caltech/NRL-MRY

 

Comments are closed.