Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
BlackSky Announces Next Generation Dual Payload Satellite Architecture to Deliver High Resolution and Nighttime Imaging Capabilities
HERNDON, Va.- BlackSky, a leading provider of global monitoring...
Draganfly Selected as Sole Provider of Smart Vital Sign and Social Distancing Equipment
Los Angeles, California - Draganfly Inc. (OTCQB: DFLYF) (CSE:...
Esri and AfroChampions Launch Partnership to Promote GIS in Africa
Redlands, Calif., United States:  Esri, the global leader in location...
Verizon deploys remote network-connected drone during Big Hollow Wildfire
PORTLAND, Ore.- The Federal Aviation Administration (FAA) granted Skyward,...
United Launches Online ‘Map Search’ Feature, A First Among U.S. Airlines
CHICAGO - Let's say you live in Chicago, have $250 to spend...

Acquired March 23, 2013, this high-resolution image from the WorldView-2 satellite shows a portion of the Wilkins Ice Shelf and a large assemblage of icebergs and sea ice just off the shelf front. Some of the iceberg surfaces give clues that they recently broke off from the shelf. Many are somewhat lighter in color than the nearby sea ice, and some bear the same surface features as those seen on the shelf, including melt pond scars, which appear in pale blue. The scars are areas where meltwater once pooled on top of the ice and then refroze.

Just as earthquakes can sometimes leave landscapes more prone to future quakes, the breakups on the Wilkins Ice Shelf on the western side of the Antarctic Peninsula left it vulnerable to further disintegration.

The sea ice that had long pressed the shelf up against the coastline moved out, putting the remnants of the shelf in direct contact with open water. Ocean waves went to work on the ice, and in early 2013 the fracturing continued.

Ted Scambos of the National Snow and Ice Data Center has followed the effects of rising temperatures on the ice shelves of the Antarctic Peninsula, but he doesn’t attribute this most recent breakup to global change.

“I wouldn’t characterize this breakup as a direct result of climate warming, but rather an indirect result of the change in the shape of the shelf,” he states. “A breakup changes the stresses within the ice and will cause small retreats that reshape the shelf for several years. These retreats tend to happen when ocean waves can impinge directly on the shelf front.”

Image courtesy of DigitalGlobe and Paul Morin and William Risse, Polar Geospatial Center.

Read the full story.

Comments are closed.