Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Great Lakes Digital Surface Model Products Released to the Public
St. Paul, Minnesota – The Great Lakes Alliance for...
CHC Navigation Introduces the i73+ Pocket-sized GNSS Base and Rover with Built-in UHF Modem
The i73+ IMU-RTK is the most compact, lightweight and...
RMSI Appoints Arun Vishwanathan as Vice President – Business Development
Dallas, Texas: RMSI has expanded its global sales team...
Kavel 10 Aerial Mapping pioneers from the Netherlands chose Phase One PAS 880 system to improve productivity
Best in Class Image Quality with Outstanding Time-Saving Workflow...
Aloft Technologies Launches Geospatial Management Tools for Its Drone Data Network
Aloft Geo Portal Brings New Drone Airspace Mapping Functionality  to...

As solutions to the technical challenges of producing cellulosic-based biofuel efficiently are solved, demand for cellulosic feedstocks such as switchgrass is expected to increase.

Armed with satellite-derived data of Nebraska grasslands, U.S. Geological Survey (USGS) scientists demonstrate high potential for growing biofuel crops with relatively little energy input and environmental impact.

The pioneering investigation used remote sensing data from satellites to identify detailed areas of the Greater Platte River Basin (most of Nebraska, parts of adjacent states) that are best suited for producing cellulosic (from the cell walls of plants) biofuel derived from hardy switchgrass, a native plant that grows wild or is easily cultivated.

“This innovative scientific study takes some of the guesswork out of deciding whether it could be feasible to raise a potentially high value crop for biofuels on America’s grasslands,” said USGS Director Marcia McNutt. “Using non-food crops for fuel grown on land not now under cultivation is a low-impact step towards America’s energy independence.”

The maps of areas with high biofuel production potential were produced by combining satellite-derived vegetation data with weather data, soil types, terrain, and other physical data.

Image courtesy of David Peterson.

Read the full story.

Comments are closed.