Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Breakthrough Technology Introduced to Combat Growing Global Water Crisis
DUNEDIN, FLA. - To combat the global threat of...
Blue Marble Geographics releases version 8.1 of the GeoCalc Software Development Kit
Hallowell, Maine  — Blue Marble Geographics® (bluemarblegeo.com) is pleased to announce...
Fugro finishes first phase on Alcatel Submarine Networks’ transpacific Bifrost Cable System
Fugro has completed the first phase of its marine...
Paytronix Announces Integration with Google to enable ordering on Google Search and Maps
Newton, MA– Paytronix Systems, Inc., the most advanced digital guest experience platform, today announced...
USAF, Kratos Complete Milestone 1 of the Autonomous Attritable Aircraft Experimentation (AAAx) Campaign with Successful Flight Test Series
SAN DIEGO - Kratos Defense & Security Solutions, Inc. (NASDAQ:...

Space Flight Laboratory (SFL) announced the successful launch of three formation-flying microsatellites built by SFL under contract to Deep Space Industries for HawkEye 360 Inc. The microsatellites were launched into low Earth orbit on Dec. 3, 2018, from Vandenberg Air Force Base, Calif.

The HawkEye 360 Pathfinder microsatellites will detect and geolocate radio frequency (RF) signals from VHF radios, maritime radar systems, automatic identification system (AIS) beacons, VSAT terminals and emergency beacons. HawkEye 360 will apply advanced RF analytics to this data to help customers assess suspicious vessel activity, survey communication frequency interference, and search for people in distress.

“This is the first time a commercial company has utilized formation-flying satellites for RF detection,” said John Serafini, CEO of HawkEye 360.

Precise formation flying is critical to the HawkEye 360 RF system because the relative positions of each satellite in the constellation must be known to accurately geolocate the transmission sources of the radio frequency signals. For the triangulation to be calculated correctly, each satellite must be located with sufficient precision in space and relative to one another.

Comments are closed.