Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Woolpert Adds Vice President, Senior Strategic Consultant to ISO/TC 251 Asset Management Advisory Group
David Feuer and Bob Leitch are the most recent...
3 Keys to successful canopy penetration
Summer is here and with it comes the challenge...
Vaisala and FMI technology heads to Mars onboard NASA’s Perseverance rover
International collaboration takes Vaisala and the Finnish Meteorological Institute...
Solar Orbiter commissioned in orbit despite Covid-19
Stevenage  – Airbus has successfully completed the In-Orbit Commissioning...
Swift Navigation, Deutsche Telekom, Ericsson and Quectel Announce New Vision for Supporting 3GPP SSR Standard
SAN FRANCISCO - Swift Navigation, Deutsche Telekom, Ericsson and...

A dust plume from the Sahara Desert streams out over the northeast Atlantic Ocean. Researchers are using satellite imagery to better predict how tiny aerosol particles may influence the global climate. (Credit: NASA Visible Earth)

Earth’s atmosphere is dusted with tiny particles known as aerosols, which include windblown ash, sea salt, pollution, and other natural and human-produced materials. Aerosols can absorb or scatter sunlight, affecting how much light reflects back into space or stays trapped in the atmosphere.

Despite aerosols’ known impact on Earth’s temperature, major uncertainties plague current estimates of their overall effects, which in turn limit the certainty of climate-change models. To reduce this uncertainty, scientists combined new satellite data, providing, for the first time, data on aerosols’ ability to absorb or reflect light globally.

In this new study, the team focused on the direct effects of aerosols on shortwave radiation in 2006. These effects depended on the particles’ vertical location with respect to clouds, the reflective properties of the underlying land or water, and the optical properties of the aerosol particles themselves, including how much light they’re prone to scatter or absorb.

Click here to read more.

 

Comments are closed.