Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
BlackSky Secures $50M in Funding from Intelsat
HERNDON, Va.- BlackSky, a leading provider of geospatial intelligence,...
OGC Renews Memorandum Of Understanding With FrontierSI
The Open Geospatial Consortium (OGC) announces that it has...
Iris Automation And Kansas DOT Successfully Complete Historic Beyond-Visual-Line-Of-Sight Drone Flight
TOPEKA, Kan. - The Kansas Department of Transportation's (KDOT) Unmanned...
REIN’s DroneInsurance.com and Measure Collaborate to Provide Commercial Drone Operators with Integrated Access to Drone Insurance
CHAPEL HILL, N.C. - REIN's DroneInsurance.com, a digital drone...
Draganfly Inc. Appoints Military And UAV/UVS Veteran Patrick Imbasciani As Chief Operating Officer
Vancouver, British Columbia - Draganfly Inc. (CSE: DFLY) (“Draganfly”...

This visualization shows the relative density of certain particles in Earth’s ionosphere. The E-TBEx CubeSats will explore how signals from satellites to Earth can be disrupted as they pass through this region. (Credit: NASA)

NASA’s twin Enhanced Tandem Beacon Experiment (E-TBEx) CubeSats are scheduled to launch in June 2019 aboard the Department of Defense’s Space Test Program-2 launch. The launch includes a total of 24 satellites from government and research institutions. They will launch aboard a SpaceX Falcon Heavy from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

The E-TBEx CubeSats focus on how radio signals that pass through Earth's upper atmosphere can be distorted by structured bubbles in this region, called the ionosphere. Especially problematic over the equator, these distortions can interfere with military and airline communications as well as GPS signals. The more we can learn about how these bubbles evolve, the more we can mitigate those problems—but right now, scientists can’t predict when these bubbles will form or how they’ll change over time.

“These bubbles are difficult to study from the ground,” said Rick Doe, payload program manager for the E-TBEx mission at SRI International in Menlo Park, California. “If you see the bubbles start to form, they then move. We’re studying the evolution of these features before they begin to distort the radio waves going through the ionosphere to better understand the underlying physics.”

The ionosphere is the part of Earth’s upper atmosphere where particles are ionized—meaning they’re separated out into a sea of positive and negative particles, called plasma. The plasma of the ionosphere is mixed in with neutral gases, like the air we breathe, so Earth's upper atmosphere—and the bubbles that form there—respond to a complicated mix of factors.

Because its particles have electric charge, the plasma in this region responds to electric and magnetic fields. This makes the ionosphere responsive to space weather: conditions in space, including changing electric and magnetic fields, often influenced by the sun’s activity. Scientists also think that pressure waves launched by large storm systems can propagate up into the upper atmosphere, creating winds that shape how the bubbles move and change. This means the ionosphere—and the bubbles—are shaped by terrestrial weather and space weather alike.

The E-TBEx CubeSats send radio beacon signals at three frequencies—close to those used by communications and GPS satellites—to receiving stations on the ground, at which point scientists can detect minute changes in the signals’ phase or amplitude. Those disruptions can then be mapped back to the region of the ionosphere through which they passed, giving scientists information about just how these bubbles form and evolve.

“All signals are created at the same time—with the same phase—so you can tell how they get distorted in passing through the bubbles,” said Doe. “Then, by looking at the distortions, you can back out information about the amount of roughness and the density in the bubbles.”

The data produced by the twin CubeSats is complemented by similar beacons onboard NOAA's six COSMIC-2 satellites. Like the E-TBEx CubeSats, the COSMIC-2 beacons send signals at three frequencies—slightly different than those used by E-TBEx—to receiving stations on the ground. The combination of measurements from all eight satellites will give scientists chances to study some of these bubbles from multiple angles at the same time.

 

Comments are closed.