Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
IntelliCAD® Mobile 1.4 Available for ITC Mobile SIG Members
IntelliCAD Mobile Platform 1.4 opens and regenerates drawings using...
Intrex Partners with Wirepas to Bring Real-Time, Actionable Data to Senior Living Communities
Rythmos® Solution Bridges Gap Between Safety & Medical Records,...
Lacuna and Semtech Expand LoRaWAN® Coverage through IoT to Satellite Connectivity
Companies to collaborate to accelerate Internet of Things (IoT)...
Joanne Maguire Selected as Recipient of the 2022 General James E. Hill Lifetime Space Achievement Award
COLORADO SPRINGS, Colo. — Space Foundation, a nonprofit advocate...
Nemetschek Group Expands Leading Position in Massive and Strongly Growing 3D Animation Industry with Maxon´s Acquisition of Pixologic
Creators of Academy Award-winning sculpting and painting software ZBrush...

Thanks to the Moon, the Sun and gravity, the place where the land meets the sea is not a fixed line. What we see on a map is just a representation of where mean sea level is found, and the coast of any landmass is really a moving target between low and high tides. This ever-shifting region is known to scientists as the intertidal zone.

The world’s intertidal zones include an array of ecosystems: sandy beaches, rocky shores, tidal pools, mudflats, seagrass beds, mangrove forests and fringing coral reefs. Many life forms have adapted to this transitional place, and they play a critical role in the food chain and in nutrient and carbon cycling. For instance, the intertidal zone is an indispensable feeding ground for shorebirds, particularly during migration.

For humans, the zone provides recreational spaces and the first line of defense against the sea. Knowing the width and height of the intertidal zone aids in tsunami preparedness, storm-surge risk management, current modeling, and ecological habitat mapping. Yet this region has largely been missed in most mapping efforts, falling between well-mapped dry land and bathymetry (depth) measurements of the ocean.

Harnessing 30 years of Landsat data, researchers from Geoscience Australia recently added this missing piece to their continent, creating the first 3D model of Australia’s pesky, changeable intertidal zone.

Led by Robbi Bishop-Taylor and Stephen Sagar, the team created the first automated, open-source method for deriving intertidal zone elevations. Then they made the first nationwide coastal elevation model for Australia, the National Intertidal Digital Elevation Model (NIDEM), covering more than 15,000 square kilometers (5,800 square miles) of coast. The work was published in the journal Estuarine, Coast and Shelf Science

“The rise and fall of tides can be used to trace the 3D shape of the intertidal zone,” Bishop-Taylor explained. “By sorting 30 years of Landsat satellite images using a tidal model, we can reveal exactly what areas of the coastline are exposed at different levels of the tide.”

Building on earlier work that used Landsat to map the horizontal extent—the x and y directions—of the intertidal zone, the Geoscience Australia team applied knowledge of the tidal range and of the presence or absence of seawater during the tidal cycle to model the elevation—the “z”—relative to mean sea level. The accuracy of this approach for tidal flats and sandy shores is high, approaching that of lidar-derived elevations. For rocky shores and places where the tidal model does not capture the complex or extreme tidal patterns, NIDEM is a bit less accurate.

Credits: Images by Robbi Bishop-Taylor/Geoscience Australia, using Landsat data from the U.S. Geological Survey and the National Intertidal Digital Elevation Model (NIDEM). Story by Laura Rocchio, NASA Landsat Science Outreach Team, with Mike Carlowicz.

Comments are closed.