Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Spire Global Awarded $6 Million NASA Contract Extension for Earth Observation Data
VIENNA, Va.- Spire Global, Inc. (NYSE: SPIR) (“Spire” or “the...
The InfraMarker® RFID App Now Live in the Esri ArcGIS Marketplace
MADISON, Wis., June 23, 2022 /PRNewswire/ -- Berntsen International, a leading manufacturer...
SkyDrop, Domino’s gear up to launch commercial drone delivery trial in New Zealand
RENO, Nev.- SkyDrop announced that production of the drone...
Esri Releases ArcGIS GeoAnalytics Engine, Enabling Comprehensive Spatial Analysis for Big Data
REDLANDS, Calif.— Globally, organizations across industries are using big...
BAE Systems Selected to Advance Autonomous Technology for Automatic Target Recognition
BURLINGTON, Mass.- The Air Force Research Laboratory (AFRL) awarded...

January 8, 2014
DARPA Developing New Spy Satellite Concept

Instead of using traditional glass mirrors or lenses, MOIRE seeks to diffract light with Fresnel lenses made from a lightweight membrane roughly the thickness of household plastic wrap. MOIRE houses the membranes in thin metal “petals” that launch in a tightly packed configuration. Upon reaching its destination orbit, the satellite will unfold the petals to create the full-size multilens optics.

The Defense Advanced Research Projects Agency (DARPA) has plans to develop an ultimate spy satellite capable of viewing 40 percent of Earth’s surface at once—without glass optics.

The Membrane Optical Imager for Real-Time Exploitation (MOIRE) space telescope will be launched as a tightly packed cluster of petals 20 feet in diameter, helping it stretch out to 68 feet across. The telescope will record Earth’s surface with high-resolution imagery, making it a big asset for the military as well as weather forecasters and disaster response teams.

The program is addressing challenges that glass presents when trying to develop a large telescope. MOIRE will help create technologies that enable future high-resolution orbital telescopes to provide real-time video and images of Earth from a geosynchronous orbit, which is about 22,000 miles above the planet’s surface. These technologies would make orbital telescopes much lighter, more transportable and more cost-effective.

The MOIRE program will use lightweight polymer membrane optics to replace the glass mirrors. These optics traditionally have been too inefficient to use in telescope optics, but MOIRE has nearly doubled the efficiency, from 30 percent to 55 percent. This improved efficiency enabled MOIRE to take the first images ever with membrane optics.

Image courtesy of DARPA.

Read the full story.

Comments are closed.