Pix4D and Parrot Back 6 Top Researchers to Help them Answer key #ClimateChange Questions Using Drone Mapping

by | Jun 23, 2017

In December 2016, Pix4D and Parrot announced we would award a climate innovation grant to help foster innovation around the impact of global climate change.  We received over 250 proposals from researchers across a range of disciplines.

We selected six projects, chosen on novelty, scientific merit, and team experience. We also considered advanced degrees, formal association with educational organizations or institutions, and a strong record of climate change research.

Our grant winners have received a Parrot Disco-Pro AG that embeds a Parrot Sequoia multispectral sensor, a 1- year Pix4D software license, and training to help them move their research forward.


The role of climate in modulating wildlife extinctions in African drylands

Robert M. Pringle
Assistant Professor
Department of Ecology & Evolutionary Biology
Princeton University, USA

We want to use drone-based ecological monitoring to incorporate regular low-altitude image surveys of our plots into our regular long-term monitoring program.

Specifically, we want to measure woody-plant biomass, phenology, water stress, net aboveground productivity, and canopy architecture. All of which are impossible to measure with current satellite technology and the best available ground-based methods are exceedingly time-consuming and frustratingly imprecise to boot.


Drone-based detection of grassland phenology, productivity and composition in relation to climate

Dr. Christopher B. Field
Professor of Biology and Environmental Earth Science
Department of Global Ecology
Stanford University, USA

Our goal is to use a drone-mounted camera and multispectral sensor to map and monitor temporal and spatial variation in grassland in order to understand the role of climate variation in driving changes in grassland composition.

Specifically we propose to examine the extent to which changes in grassland composition”such as the balance of grasses vs forbs, annuals vs perennials, and invasive vs native species”are due to weather and microclimate-driven changes in phenology and/or productivity.


Growth dynamics of the lichen fields of the Central Namib Desert

Dr. Gillian Maggs-Kölling
Executive Director
Gobabeb Research and Training Centre

Our long-term goal would be to try and model productivity of the lichen-fields based on the multi-spectral bands (specifically the near-infrared and red edge bands), and in this way monitor the vigour and growth of the lichen fields. These data could inform land management practices in the uranium-rich Central Namib Desert.


Using drones to monitor grassland responses to shifting climate and restoration

Dr. Holly P. Jones
Assistant professor
Department of Biological Sciences
Northern Illinois University, USA

A multispectral camera will significantly reduce our workload because we would no longer have to overlay these images by hand to calculate NDVI and other measurements.

This grant will scale our pilot-project and look at how restoration interacts with climate and allow us to help managers forecast what that will mean for future prairie restorations.


Monitoring insect pest impacts in mediterranean forests

Lluís Brotons
Senior researcher
InForest JRU

We want to to quantitatively assess the impact of the the pine processionary moth on pine forests at the forest stand scale (10-100 ha).

Satellite imagery has strong constraints on the quantity and quality of information. RGB imagery may not be adequate to conduct impact assessment across space and time.

Multispectral data (i.e. infrared) allows a much better comparison across images taken in different locations and times.


Climate-driven greening of the Siberian Arctic: Multispectral sensors on UAVs bridge ground to satellite scaling challenges

Jeffrey Kerby
Neukom Institute
Institute for Arctic Studies

Multispectral data will allow for direct radiometric comparisons with vegetation change patterns captured by satellite data.

This grant offers huge advantages: discrete spectral bands, direct measures of incoming solar radiation, integrated IMU data, integrated GPS data, streamlined workflow.

This integrated system (camera + software) allows for easier exploration of the relationship between spectral and structural influences on scaling the effects of how vegetation responds to climate change in the Arctic.


Stay tuned to learn more about each winning project and how drone mapping technology helps study the effects of climate change on this variety of essential global ecosystems.


May Issue 2024