Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Pointivo Lands Eighth Patent Increasing Coverage of the Drone Analytics Market
ATLANTA - Pointivo, the leading software platform provider for asset...
Industrial Internet Consortium White Paper Surveys IIoT Information Models and Develops Meta-model for Interoperability
The Industrial Internet Consortium® (IIC™) today announced the publication of...
Liteye Systems Launches: Liteye SHIELD The Next Generation of Counter UAS Defense
Centennial Colorado - Liteye Systems, Inc., a US leader in...
Satellites to help safeguard sustainability of palm oil, with launch of UK and Mexico project
UK Space Agency’s International Partnership Programme (IPP) and Ecometrica’s...
ALP.Lab and Cepton Deploy Lidar Intelligence to Enable Smart Intersections and Road Safety in Europe
SAN JOSE, Calif.- Cepton, a leading provider of intelligent,...

February 16, 2021
Orbit Logic tackles autonomous lunar exploration with robotic swarms

Orbit Logic has been awarded a Phase I Small Business Technology Transfer (STTR) contract sponsored by NASA to develop the Intelligent Navigation, Planning, and Awareness for Swarm Systems (IN-PASS) solution – an autonomous planning architecture supporting collaborative Lunar exploration with teams of humans cooperating with heterogeneous swarms of orbital (satellite) and surface (rover) assets. IN-PASS is being developed in partnership with the University of Colorado Boulder (CU).

 

 
 

IN-PASS Example Mission Concept with Autonomous Swarm and an Astronaut-in-the-Loop

Orbit Logic’s existing Autonomous Planning System (APS) is the foundation of the IN-PASS architecture. An instance of APS will operate onboard each swarm asset to provide asset level resource planning and independence as well as to enable autonomous cooperation between assets over intermittently available communication links. Under this effort, Orbit Logic will develop the human-robot teaming in APS so that astronauts or mission operators can interact as “humans-on-the-loop” with IN-PASS to provide guidance, shape mission objectives, and directly participate by handling tasks that are uniquely suited to human dexterity or cognition. The net result will be that humans will be able to leverage the full capabilities of a heterogeneous robotic swarm without micromanaging the actions of each individual asset.

 

CU’s Event-Triggered Decentralized Data Fusion (ET-DDF) algorithm will maintain a common relevant operations picture (CROP) with minimal data exchange. Specialized communication models will be developed to simulate this data exchange accurately. Finally, Linear Temporal Logic (LTL) will be used for task specification and multi-objective control policies will be designed to tradeoff navigation performance and resource use onboard rovers. In addition, CU’s ASPEN lab will provide an environment for mixed-mode hardware testing with real wheeled robots.

 

APS is a powerful technology that can be leveraged for autonomous planning in any domain. The breadth of its applications proves its flexibility; beyond robotic Lunar exploration, Orbit Logic has utilized APS for the autonomous operation of heterogeneous constellations of Low Earth Orbit (LEO) satellites with DARPA and AFRL, heterogeneous swarms of unmanned underwater/surface/aerial vehicles (UUVs/USVs/UAVs) with the Navy, and heterogeneous swarms of rovers, satellites, and atmospheric vehicles for robotic Mars exploration with NASA

Comments are closed.