Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Airbus Defence and Space Breaks World In-orbit Longevity Record
Inmarsat-2 F2, the second Eurostar satellite designed and built...
GITA Adopts Diversity and Inclusion Policy
St. Paul, Minnesota, Dec. 19, 2014 – The Geospatial...
Transform with Magnetic North or Make Your Own Geoid with Calculator 2015
Hallowell, Maine – December 18, 2014 - Blue Marble Geographics is...
The Greenland Ice Sheet: Now in HD
SAN FRANCISCO, Dec. 18, 2014—The Greenland Ice Sheet is...
Boundless Hires Chief Marketing Officer to Help Bring Spatial to IT
New York, NY, December 18, 2014 — Boundless has...

Click on image to enlarge.

A layer of stratocumulus clouds over the Pacific Ocean served as the backdrop on June 21, 2012, when NASA’s Terra satellite captured this rainbow-like optical phenomenon known as a glory. An added viewing bonus in this image are the swirling von karman vortices visible near the glory.

Glories appear as rings of color in front of mist or fog, forming when water droplets within clouds scatter sunlight back toward an illumination source. Although glories may look similar to rainbows, the way light is scattered to produce them is different. Rainbows are formed by refraction and reflection, but glories are formed by backward diffraction.

The most vivid glories form when an observer looks down on thin clouds with droplets that are between 10 and 30 microns in diameter. The brightest and most colorful glories also form when droplets are roughly the same size.

Glories are usually seen against a background of white clouds. Clouds are white because the sunlight is scattered many times by multiple droplets within the clouds. The white light often obscures details of glories, but without them in the background, the glory would not be visible.

Read the full story.

Comments are closed.