Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
U.S. Air Force’s First GPS III Satellite Receives Commands From Next-Generation OCX Ground Control Segment
DENVER – The first advanced GPS III satellite successfully...
Airbus Selected by ESA for Copernicus Data and Information Access Service (DIAS)
Brussels – Airbus has been selected by the European...
Map of the Month: Anholt-GfK Nation Brands Index Study, 2017
This year's Anholt-GfK Nation Brands IndexSM study finds that...
Manufacturer’s Edge CEO Tom Bugnitz Receives Cosmic Contributor Award
(Denver, CO) On December 6, Manufacturer’s Edge (ME) CEO...
Esri Business Partner, GEO Jobe, Announces Release of Admin Tools V 1.0.14 in the ArcGIS Marketplace
NASHVILLE, Tenn. - We're pleased to announce an important...

An international team of scientists and students led by CU-Boulder used multiple unmanned aircraft to simultaneously intercept the outflow of a thunderstorm at Colorado’s Pawnee National Grassland in August 2014.  Such information should help scientists better understand extreme weather tied to tornado activity.

An international team of scientists and students led by CU-Boulder used multiple unmanned aircraft to simultaneously intercept the outflow of a thunderstorm at Colorado’s Pawnee National Grassland in August 2014. Such information should help scientists better understand extreme weather tied to tornado activity.

Several organizations teamed to conduct the first multiple, unmanned aircraft interception of a telltale rush of cold air preceding a thunderstorm at the Pawnee National Grassland in northeast Colorado on Aug. 14, 2014.

The international research effort, organized by the University of Colorado Boulder’s Research and Engineering Center for Unmanned Vehicles (RECUV), also involved the University of Nebraska-Lincoln, Texas Tech University, Colorado State University, the University of Tübingen in Germany and the Center for Severe Weather Research based in Boulder. A gust front is a boundary that separates a cold thunderstorm downdraft from warm, humid surface air, which is of interest to scientists because it can generate damaging wind speeds up to 100 miles per hour.

“We believe this was the first time multiple unmanned aircraft systems were flown simultaneously to make coordinated measurements of the outflow from an evolving thunderstorm,” said CU-Boulder postdoctoral fellow Jack Elston.

Elston is the principal investigator and organizer of the National Science Foundation-sponsored Multi-sUAS Evaluation of Techniques for Measurement of Atmospheric Properties field experiment, or MET-MAP. RECUV is a university, government and industry partnership headquartered in CU’s aerospace engineering sciences department.

Image courtesy of Jack Elston, University of Colorado.

Read the full story.

 

Comments are closed.