Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Maxar Secures NOAA Approval to Provide Non-Earth Imaging Services to Government and Commercial Customers
WESTMINSTER, Colo.- Maxar Technologies (NYSE:MAXR) (TSX:MAXR), provider of comprehensive...
AEye Announces Groundbreaking Immersive Lidar Experience for Attendees at CES 2023
DUBLIN, Calif.- AEye, Inc. (NASDAQ: LIDR), a global leader in...
WIMI Hologram Academy: Multi-Dimensional Holographic Vision Opens A New Chapter In Cyberspace Mapping
HONG KONG - WIMI Hologram Academy, working in partnership...
Foursquare to Power Geospatial Data Visualization in Amazon SageMaker
NEW YORK-Foursquare, the leading independent location technology company, exclusively...
UK govt funds rocket that could allow us to escape solar system
LONDON- DECEMBER 2022:  Pulsar Fusion, a UK rocket company that...
Detecting_long-term_bridge_movements

The GeoSHM system combines local sensors and satellite imagery to help users better understand infrastructure movements, including ground subsidence around bridge sites.

The University of Nottingham, with support from the European Space Agency, recently developed the Global Navigation Satellite System and Earth Observation for Structural Health Monitoring (GeoSHM) system to detect and measure movement of key infrastructure as well as the surrounding ground.

The system uses receivers placed in key locations upon bridges and other structures for real-time information. The readings are combined with historical Earth observation imagery to detect possible influences for movements within or around the structures. The Forth Road suspension bridge is one of the structures analyzed recently.

“I knew the bridge can move significantly under high winds, but for the first time I know that bridge moved 3.5 meters laterally and 1.83 meters vertically under a wind speed of 41 meters per second,” says Bridgemaster Barry Colford.

 

Comments are closed.