Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
With its new generation LiDAR, Valeo makes autonomous mobility a reality
PARIS - Valeo, the global leader in driving assistance...
Ouster Expands to Japan and South Korea to Support Growing Demand for High-Resolution Digital Lidar Sensors
SAN FRANCISCO - Ouster, Inc. (NYSE: OUST) (“Ouster” or...
Burgex Mining Consultants Adds High Accuracy LiDAR Mapping Capabilities to Range of Services
SALT LAKE CITY -Burgex Inc. Mining Consultants is excited...
Esri Releases GIS for Science, Volume 3
REDLANDS, Calif.-Species are the foundation of a healthy planet,...
Valeo Introduces Its Third Generation LiDAR
DETROIT - Valeo, the global leader in advanced driving...
  • Nov 4, 2014
  • Comments Off on Subsidence in Southern Colorado Linked to Gas Production and Earthquakes
  • Uncategorized
  • 672 Views

November 4, 2014
Subsidence in Southern Colorado Linked to Gas Production and Earthquakes

Reston, Va., Oct. 29, 2014—New radar observations show significant ground subsidence near the Colorado-New Mexico border in the area where a magnitude 5.3 earthquake struck in August 2011. The analysis supports the idea that earthquakes in this region may be triggered by waste-water disposal.

In a recent study published in the American Geophysical Union’s Journal of Geophysical Research, scientists from the U.S. Geological Survey used satellite radar observations (interferometric synthetic aperture radar, or InSAR) to show that there is significant vertical deformation, or ground subsidence, in the Raton Basin, likely caused by methane and water withdrawal from coal beds. Also, there is no evidence for shallow volcanic activity throughout the observation period.

Alternatively, the August, 2011, earthquake occurred close to several wastewater disposal wells during times when injection was occurring. Aspects of the earthquake rupture, including the location of slip, the style of faulting and the statistics of the 2011 earthquake aftershock sequence, suggest that the earthquake was likely caused by a slip on a naturally stressed fault that was triggered by the fluid disposal.

The InSAR analysis provides a new method of looking at earthquake location and dimensions, allowing USGS and other scientists to further explore relationships between fluid extraction and injection, induced seismicity, local geology and hydrological systems. The satellite data also provide a check on the seismological observations that are most commonly used to analyze induced seismicity, and allow scientists to explore deformation that does not produce seismic signals.

Comments are closed.