Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Satellite Images Erupting Russian Volcano
Shiveluch, one of the world's most active volcanoes, is...
Caliper Corporation: 2017 Sustained Growth
NEWTON, MASSACHUSETTS (USA) - Caliper Corporation, founded in 1983...
1Spatial Grows its Team of Safe Software FME Certified Trainers
1Spatial Platinum Partner of Safe Software and value added...
NSR Report Projects Satellite Ground Segment Reaching $158 Billion in Next Decade
CAMBRIDGE, Mass., Aug. 21, 2017 - NSR’s Commercial Satellite...
DigitalGlobe Announces Four-Year Direct Access Contract with the Australian Department of Defence
DigitalGlobe, Inc. (NYSE: DGI), the global leader in Earth...

Click on image to enlarge.

In northwest Australia, the Great Sandy Desert holds great geological interest as a zone of active sand dune movement and noticeable fire scars.

Although a variety of dune forms appear across the region, this astronaut photograph features numerous linear dunes (about 25 meters high) separated in a roughly regular fashion (0.5 to 1.5 kilometers apart). The dunes are aligned to the prevailing winds that generated them, typically blowing from east to west.

Where linear dunes converge, dune confluences point downwind. When you fly over such dune fields—either in an airplane or the International Space Station—the fire scars stand out. Where thin vegetation has been burned, the dunes appear red from the underlying sand; dunes appear darker where the vegetation remains.

Image courtesy of NASA.

Read the full story.

Comments are closed.