Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
NSR Report Projects Satellite Ground Segment Reaching $158 Billion in Next Decade
CAMBRIDGE, Mass., Aug. 21, 2017 - NSR’s Commercial Satellite...
DigitalGlobe Announces Four-Year Direct Access Contract with the Australian Department of Defence
DigitalGlobe, Inc. (NYSE: DGI), the global leader in Earth...
MAPPS Recognizes Geospatial Pros with Presidential Awards
MAPPS has honored 10 individuals with Presidential Awards for...
Delphi Partners with Innoviz Technologies to Provide High-Performance LiDAR Solutions for Autonomous Vehicles
GILLINGHAM, England and KFAR SABA, Israel -- Delphi Automotive PLC...
Paradigm Imaging Group Introduces the New PIXis UV Flatbed Printers
Costa Mesa, CA - Paradigm Imaging Group, a leading...

The TerraLuma team uses a diverse range of sensors on its unmanned aircraft, including the Flir Photon 320 thermal sensor shown here. The camera and data logger weigh less than one kilogram.

University of Tasmania researchers employ a wide range of sensors aboard unmanned aircraft to map and monitor different aspects of the environment at ultra-high resolutions on demand.

The TerraLuma research project at the University of Tasmania aims to develop novel tools and algorithms for environmental remote sensing applications and aerial surveys using unmanned aircraft systems (UASs). Up-to-date and accurate spatial data are of crucial importance for sustainable management of our ecosystems. UASs offer an exciting and novel opportunity to map the environment in greater detail than ever before.

The project team has been working with UASs and specialized sensors since 2009. One of the project’s unique aspects is the integration of multiple sensors—visible, multispectral and hyperspectral, thermal and LiDAR—to map and monitor different aspects of the environment at ultra-high resolution on demand.

The team has worked on a range of applications, including precision agriculture and viticulture; mapping and monitoring vegetation in remote locations such as Antarctica; deriving 3-D tree structure for forest inventories; landslide mapping and deformation monitoring; 3-D stock pile and quarry surveys and volume estimations; coastal erosion assessments; mapping of geological structures; and mapping of natural vegetation communities such as saltmarshes.

Image courtesy of University of Tasmania.

Learn more about TerraLuma.

Comments are closed.