Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
SimActive Enables Processing in the Cloud
Montreal, Canada, November 29th, 2016 – SimActive Inc., a...
Satellites Confirm: San Francisco’s Millennium Tower Sinking
European Space Agency (ESA) Sentinel-1 satellites have shown that...
what3words Adopted by Six National Mapping Agencies
London – what3words, the multi-award winning location reference system,...
Research and Markets – Geospatial Imagery Analytics Market – Analysis, Technologies & Forecasts to 2021 – Key Vendors are Hexagon, Geocento & Google
Research and Markets has announced the addition of the...
Indonesian Company Amilna Selected SuperGIS Desktop 10 to Process Spatial Data
Supergeo Technologies Inc., the global geospatial software and solutions...
A map shows below-ground land-to-sea water transfers along the coast of the continental United States. Blue areas have greater flow than red areas. (Credit: The Ohio State University/NASA-JPL-Caltech)

A map shows below-ground land-to-sea water transfers along the coast of the continental United States. Blue areas have greater flow than red areas. (Credit: The Ohio State University/NASA-JPL-Caltech)

Coastal waters and nearshore groundwater supplies along more than a fifth of coastlines in the contiguous United States are vulnerable to contamination from previously hidden underground transfers of water between the oceans and land. This revelation was found in a study recently published in the journal Science by researchers at The Ohio State University and NASA’s Jet Propulsion Laboratory.

The study resulted in the first-ever map of the underground flows that connect fresh groundwater beneath the contiguous United States and seawater in the surrounding oceans, highlighting areas most vulnerable to degraded water quality from these flows now and in the future.

The researchers combined U.S. topographic data and NASA climate models to identify key inland regions that contribute groundwater and contaminants to the coast. They examined rainfall, evaporation rates and the amount of known surface runoff to calculate the missing portion of water that was running out below ground, then melded those results with terrain and land-use data to identify where the water ended up.

Comments are closed.