Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Aerojet Rocketdyne RS-25 Test Advances Exploration Efforts
STENNIS SPACE CENTER, Miss. - Today, NASA and Aerojet...
ULIS’ Thermal Activity Sensor Selected by Irlynx for Smart Buildings Projects
Veurey-Voroize, near Grenoble, France, January 17, 2018 – ULIS,...
4DGlobal to Provide Applanix Products and Solutions for Land and Air Survey Customers in Australia and New Zealand
BUNDOORA, AUSTRALIA & RICHMOND HILL, CANADA - Applanix, a Trimble...
NASA Calculated Heavy Rainfall Leading to California Mudslides
NASA recorded the amount of rainfall between Jan. 8-10,...
GEO Jobe Names David Hansen as Chief Operating Officer (COO)
NASHVILLE, Tenn. - GEO Jobe, Esri Business Partner and...

An artist’s rendering (not to scale) describes a cross-section of the magnetosphere, with the solar wind in yellow and magnetic field lines emanating from Earth in blue. The five THEMIS probes were positioned to directly observe one particular magnetic field line as it oscillated back and forth every six minutes. (Credit: Emmanuel Masongsong/UCLA EPSS/NASA)

An artist’s rendering (not to scale) describes a cross-section of the magnetosphere, with the solar wind in yellow and magnetic field lines emanating from Earth in blue. The five THEMIS probes were positioned to directly observe one particular magnetic field line as it oscillated back and forth every six minutes. (Credit: Emmanuel Masongsong/UCLA EPSS/NASA)

Using data from NASA’s Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites, scientists have observed Earth’s vibrating magnetic field in relation to the northern lights in the night sky over Canada. THEMIS is a five-spacecraft mission dedicated to understanding the processes behind auroras, which erupt across the sky in response to changes in Earth’s magnetosphere.

These new observations allowed scientists to directly link specific intense disturbances in the magnetosphere to the magnetic response on the ground. A paper on these findings was recently published in Nature Physics.

To map the auroras’ electric dance, scientists imaged the brightening and dimming aurora over Canada with all-sky cameras. They simultaneously used ground-based magnetic sensors across Canada and Greenland to measure electrical currents during the geomagnetic substorm. Further out in space, the five THEMIS probes were positioned to collect data on the motion of the disrupted field lines.

The scientists found the aurora moved in harmony with the vibrating field line. Magnetic field lines oscillated in a roughly six-minute cycle, or period, and the aurora brightened and dimmed at the same pace.

“We were delighted to see such a strong match,” said Evgeny Panov, lead author and researcher at the Space Research Institute of the Austrian Academy of Sciences in Graz. “These observations reveal the missing link in the conversion of magnetic energy to particle energy that powers the aurora.”

 

Comments are closed.