Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
SimActive Enables Processing in the Cloud
Montreal, Canada, November 29th, 2016 – SimActive Inc., a...
Satellites Confirm: San Francisco’s Millennium Tower Sinking
European Space Agency (ESA) Sentinel-1 satellites have shown that...
what3words Adopted by Six National Mapping Agencies
London – what3words, the multi-award winning location reference system,...
Research and Markets – Geospatial Imagery Analytics Market – Analysis, Technologies & Forecasts to 2021 – Key Vendors are Hexagon, Geocento & Google
Research and Markets has announced the addition of the...
Indonesian Company Amilna Selected SuperGIS Desktop 10 to Process Spatial Data
Supergeo Technologies Inc., the global geospatial software and solutions...
An artist’s rendering (not to scale) describes a cross-section of the magnetosphere, with the solar wind in yellow and magnetic field lines emanating from Earth in blue. The five THEMIS probes were positioned to directly observe one particular magnetic field line as it oscillated back and forth every six minutes. (Credit: Emmanuel Masongsong/UCLA EPSS/NASA)

An artist’s rendering (not to scale) describes a cross-section of the magnetosphere, with the solar wind in yellow and magnetic field lines emanating from Earth in blue. The five THEMIS probes were positioned to directly observe one particular magnetic field line as it oscillated back and forth every six minutes. (Credit: Emmanuel Masongsong/UCLA EPSS/NASA)

Using data from NASA’s Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites, scientists have observed Earth’s vibrating magnetic field in relation to the northern lights in the night sky over Canada. THEMIS is a five-spacecraft mission dedicated to understanding the processes behind auroras, which erupt across the sky in response to changes in Earth’s magnetosphere.

These new observations allowed scientists to directly link specific intense disturbances in the magnetosphere to the magnetic response on the ground. A paper on these findings was recently published in Nature Physics.

To map the auroras’ electric dance, scientists imaged the brightening and dimming aurora over Canada with all-sky cameras. They simultaneously used ground-based magnetic sensors across Canada and Greenland to measure electrical currents during the geomagnetic substorm. Further out in space, the five THEMIS probes were positioned to collect data on the motion of the disrupted field lines.

The scientists found the aurora moved in harmony with the vibrating field line. Magnetic field lines oscillated in a roughly six-minute cycle, or period, and the aurora brightened and dimmed at the same pace.

“We were delighted to see such a strong match,” said Evgeny Panov, lead author and researcher at the Space Research Institute of the Austrian Academy of Sciences in Graz. “These observations reveal the missing link in the conversion of magnetic energy to particle energy that powers the aurora.”

 

Comments are closed.