Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
Trimble Introduces Tekla 2018 BIM Software Solutions
SUNNYVALE, Calif.- Trimble (NASDAQ: TRMB) introduced today three new...
Drone Alliance Europe Introduces New Executive Director alongside Panel Discussion on the Future of European Drone Integration
Brussels, Belgium  – Last night, Drone Alliance Europe (DAE)...
Swift ​​Navigation ​​Introduces Skylark, a Cloud-Based, High-Precision GNSS Service
San Francisco, CA— Swift Navigation, ​​a ​​San ​​Francisco-based ​​tech...
Global Mapper and LiDAR Module SDK v19.1 Now Available with New 3D Mesh Generation Capabilities
Hallowell, Maine  - Blue Marble Geographics ( is pleased...
Quantum Spatial Awarded $1.5 Million Illinois Tollway Contract for Aerial Mapping Services
Quantum Spatial, Inc. (QSI), the nation’s largest independent geospatial data...

Radar data from the European Space Agency’s ERS-1, ERS-2 and recently decommissioned Envisat satellites show a central uplift of about 10 mm per year near the Uturuncu volcano (dark red). The surrounding region shows a slower subsidence at a rate of about 2 mm per year (blue). Data were acquired from 1992–2010.

In the central Andes mountains, satellites show that the ground above a major subterranean magma body has been rising by about 10 mm annually for two decades.

The Altiplano–Puna volcanic province is part of an active volcanic arc in South America’s central Andes. Extending through Peru, southwestern Bolivia, Chile and northwestern Argentina, it is home to several large calderas formed following catastrophic eruptions. Beneath the surface of Altiplano–Puna, about 17–19 km deep, lies the largest known active magma body in Earth’s continental crust.

In a study published in Science, scientists used radar data from theERS and Envisat missions to study an unusual uplift near the Uturuncu volcano, which had been dormant for 270 000 years. The surrounding area, however, is sinking at a slower rate of about 2 mm per year. With the wide-brimmed hat-like shape this creates, the study team has nicknamed this the “sombrero uplift.” The deformation is attributed to a ballooning of a buoyant volume of molten rock at the top of the Altiplano–Puna magma body

Image courtesy of ESA, Y. Fialko, SIO/UCSD.

Read the full story.

Comments are closed.