Earth Imaging Journal: Remote Sensing, Satellite Images, Satellite Imagery
Breaking News
ICIMOD and Radiant.Earth Establish Strategic Cooperation to Advance Earth Observation Applications and SDG Progress
KATHMANDU, Nepal and WASHINGTON - The International Centre for...
International LiDAR Mapping Forum 2018 Conference Program Announced & Registration Open
(Portland, ME) - The organizers of International LiDAR Mapping...
Peruvian Government: “Satellite investment recovered after first year of operations”
Lima, 07/12/2017 – PerúSAT-1 has completed its first year...
Esri Publishes a Textbook on How to Use ArcGIS Pro
Redlands, California—Esri, the global leader in spatial analytics, today...
PlanetObserver Presents New PlanetSAT Updates Imagery Basemap of the United States and Mexico
Clermont-Ferrand, France – The French company PlanetObserver, specialized in...

The Pléiades 1B optical satellite was launched by a Soyuz rocket, joining Pléiades 1A to form the first very-high-resolution Earth imaging constellation of its kind.

On Dec. 2, 2012, a Soyuz rocket catapulted the Pléiades 1B very-high-resolution optical satellite into orbit, where it has joined its twin Pléiades 1A satellite.

The satellite will be phased 180 degrees with Pléiades 1A on the same orbit to form a true constellation that offers daily revisits to any point on the globe. Built by Astrium for the French space agency CNES, the Pléiades constellation offers 50-cm Earth imagery with an imaging swath of 20 km, the widest in its category.

The ability to generate imagery anywhere in the world every day is vital for quick-response applications. The Pléiades constellation will be able to view conflict and crisis zones or natural disaster areas within hours of an event to help plan relief and rescue operations.

Daily revisits also allow close monitoring of civil engineering projects, mining activities and industrial or military operations. The ability to collect twice as much imagery greatly increases the chances of obtaining cloud-free imagery over a given area, making the Pléiades satellites ideal for mapping large areas at high resolution.

Image courtesy of Astrium.

Read the full story.

Comments are closed.